
www.manaraa.com

Multiscale effects of heating and cooling on genes and
gene networks
Daniel A. Charleboisa, Kevin Hausera, Sylvia Marshalla,b, and Gábor Balázsia,c,1

aThe Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794-5252; bDepartment of
Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215; and cDepartment of Biomedical Engineering, Stony Brook University,
Stony Brook, NY 11794-5281

Edited by James J. Collins, Massachusetts Institute of Technology, Boston, MA, and approved September 25, 2018 (received for review June 24, 2018)

Most organisms must cope with temperature changes. This
involves genes and gene networks both as subjects and agents of
cellular protection, creating difficulties in understanding. Here, we
study how heating and cooling affect expression of single genes
and synthetic gene circuits in Saccharomyces cerevisiae. We dis-
covered that nonoptimal temperatures induce a cell fate choice
between stress resistance and growth arrest. This creates dramatic
gene expression bimodality in isogenic cell populations, as arrest
abolishes gene expression. Multiscale models incorporating pop-
ulation dynamics, temperature-dependent growth rates, and
Arrhenius scaling of reaction rates captured the effects of cooling,
but not those of heating in resistant cells. Molecular-dynamics
simulations revealed how heating alters the conformational dy-
namics of the TetR repressor, fully explaining the experimental
observations. Overall, nonoptimal temperatures induce a cell fate
decision and corrupt gene and gene network function in compu-
tationally predictable ways, which may aid future applications of
engineered microbes in nonstandard temperatures.

temperature | cellular decision | noise | synthetic gene circuit | feedback
regulation

T emperature plays a critical role across all of biology. Endo-
thermic organisms, commonly called “warm-blooded,”

maintain their body temperature and perish if this regulation
fails. Despite common portrayal of most species as “cold-
blooded,” even ectotherms and unicellular microbes prefer a
specific temperature range where they function optimally. If the
ambient temperature departs from this optimum, cells and or-
ganisms attempt to minimize the potential damage. For instance,
the heat shock response elicits the transient expression of cyto-
protective proteins, mitigating a multitude of harmful effects
ranging from changes in cell morphology to alteration in protein
structure and function (1–3). Lack or failure of heat shock re-
sponse leads to cell cycle arrest, or sometimes cell death (4–6).
Gene-regulatory networks govern cellular protein levels and

play a double role during temperature changes. First, they re-
quire protection due to their crucial role in cellular housekeep-
ing and homeostasis (7), development (8), and survival (9).
Second, they are also instrumental in generating the protective
stress response. This twofold involvement as both the subject and
agent of cellular protection makes it difficult to understand what
happens with gene networks at nonoptimal temperatures. Ad-
ditional complexity stems from nontrivial effects of temperature
on transcription (10), translation (11), and their regulation (12,
13). Previous transcriptome expression measurements in heat
and cold shock revealed broad responses (14), but it is hard to
discern the degree to which these changes are individual gene-
level (15) or network-level effects, or cellular attempts to restore
homeostasis. Adding to these difficulties are the complexity of
biochemical interaction networks and the incomplete knowledge
of their connectivity (16, 17).
Synthetic gene circuits are relatively simple human-designed

gene networks that perform specific predefined functions, and
have promising roles as switches (18), oscillators (19, 20), and

logic gates (21) in future medical (22–24), bioenergetic (25), or
environmental (26) applications. The connectivity and compo-
nents of synthetic gene circuits are typically well characterized
and completely known by design, and their regulatory connec-
tions with the host network are assumed minimal. Therefore,
these relatively simple gene network modules should be less af-
fected by cellular attempts to restore homeostasis, making them
viable candidates for discerning and separately studying the
network module-level effects of temperature changes. Besides a
potential to advance fundamental understanding of temperature
effects on biological systems, future synthetic biology applica-
tions will require accuracy and robustness in carrying out pre-
defined functions, independent of environmental changes (27,
28). In some cases, temperature provides a way to control syn-
thetic gene circuits (29) and temperature compensation may be
possible (30). However, since most synthetic gene circuits are
developed and characterized under controlled laboratory con-
ditions, it is unclear how temperature shifts affect their function
(31), such as the gene expression noise they are designed
to impose.
To unravel how temperature affects genes and gene networks,

we chose to study multiple single genes and two synthetic gene
circuits: the “negative-feedback” (NF) or “linearizer” (32) and
“positive-feedback” (PF) (33) gene circuits. Positive and negative
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autoregulation are highly abundant motifs in natural gene net-
works (34–36), and inducible systems with autoregulation are
common in synthetic biology (37–39). Since the PF and NF gene
circuit components are not native to yeast and lack substantial
connections with the native yeast regulatory network, their be-
havior at 30 °C was predictable by quantitative modeling (32, 33).
Therefore, any deviations from this standard behavior are po-
tential nonoptimal-temperature effects. To identify such effects,
we measured both PF and NF gene expression and cell division
rates, which mutually influence each other (33, 40–42). Apart
from suboptimal growth below and above 30 °C, we discovered
unusual gene expression bimodality originating from a critical
cell fate decision between stress resistance and growth arrest
with vanishing gene expression. The resistant cells had non-
trivial gene expression trends. Computational models with
temperature-dependent growth rates and Arrhenius reaction
kinetics captured the functional effects of cooling, but not those
of heating in resistant cells. On the other hand, molecular-
dynamics (MD) simulations revealed an ability of inducer-
bound, normally inactive TetR to repress its target promoter.
Once we augmented the quantitative models with this altered
protein behavior, we could fully explain the changes in gene
circuit function at all temperatures. Our approach of systemati-
cally dissecting temperature effects on gene network modules
combined with multiscale mathematical modeling and simula-
tions is broadly applicable to analyze temperature effects on
other genes and regulatory network modules. So, studying how
heating and cooling affect the PF and NF gene circuits in relative
isolation from temperature compensation and other natural
network complexities gives clues on how heating and cooling
generally impact gene network module function. Overall, the cell
fate bifurcation, combined with altered growth rates, reaction
rates, and protein structure represent four pillars of understanding

and predicting the behavior of genetic systems at nonoptimal
temperatures in general.

Results
Temperature-Dependent Growth and Expression in Yeast Cells with a
Single Reporter Gene. Since genes and their promoters are the
basic building blocks of gene-regulatory networks, we began by
investigating how temperature affects a single reporter gene in
the YPH500 budding yeast strain (MATα ura3-52 lys2-801_amber
ade2-101_ochre trp1-Δ63 his3-Δ200 leu2-Δ1; congenic with the
standard laboratory strain S288c). First, we focused on NF0 cells
that carried only the reporter gene from the full NF gene circuit
(32), but without a regulator (Materials and Methods and Fig.
1A). In the “NF0” naming convention, the zero indicates a single
gene “without regulation” compared with the strain carrying the
complete NF gene circuit. Specifically, the NF0 strain incorpo-
rates the pGAL1-based, TetO2 operator site-containing PGAL1−D12
promoter (43, 44) driving the yEGFP::zeoR reporter gene (Fig.
1A), but lacks the tetR repressor.
Considering that cellular growth rates and gene expression

mutually affect each other (33, 41, 42), we started out by mea-
suring the growth rates of NF0 cells at temperatures ranging
from 10 to 40 °C. The growth rates of NF0 cells had an optimum
at 30 °C (Fig. 1B and SI Appendix, Fig. S1A), which is possibly
due to decades-long growth in standard laboratory conditions.
Below 30 °C, the growth rates had Arrhenius temperature de-
pendence (R2 > 0.98) (SI Appendix, Fig. S2A). Above the opti-
mum, growth rates declined rapidly, approximately linearly
with temperature.
Next, we studied temperature dependence of gene expression

for NF0 cells by flow cytometry. Surprisingly, NF0 gene expression
was bimodal at all temperatures above and below 30 °C, in
sharp contrast with its normal, unimodal appearance at the
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Fig. 1. The effect of temperature on NF0 (single reporter strain) growth rates and gene expression. (A) Schematics of NF0 consisting of the yEGFP::zeoR
reporter controlled by the PGAL1-D12 promoter. (B) Full population and resistant-cell (R cell) subpopulation growth rates of NF0 cells as a function of tem-
perature. (C) Representative NF0 gene expression histograms from experiments. (Inset) (100×) An NF0 A cell and an R cell at 38 °C. (D) Fraction of growth-
arrested low-expressing NF0 A cells from NF0 gene expression histograms in C. (E) Average reporter (yEGFP::zeoR) expression as a function of temperature
from experiments (dark gray) and gene expression results from Arrhenius models (light gray) for NF0 cells (see SI Appendix, Table S2, for parameters).
Temperature-dependent differences are statistically significant (P = 1.586 × 10−13, one-way ANOVA). Gene expression and growth rate values were nor-
malized by the corresponding values from replicates in the 30 °C control condition. Error bars represent the SEM (n = 3). Expt, experiment; norm, normalized.
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optimal temperature of 30 °C (Fig. 1C). Past studies have
shown that yeast cells can arrest growth at nonoptimal tem-
peratures (45–47) and acquire autophagic signatures (48).
Growing NF0 cells at 38 °C for 2 d and then imaging them in a
microfluidic chip (49) revealed that some, but not all cells had
expanding, granular vacuoles as their nuclei shrank and their
fluorescence diminished. This process continued until the vacu-
ole filled such cells, while their fluorescence and then their nu-
cleus completely vanished. These features suggest that some cells
might attempt surviving by autophagy (50, 51), until they suc-
cumb to cell death. Taken together with the stable bimodal gene
expression histograms for cooled and heated NF0 cells, we
concluded that cooled and heated yeast cells segregate into two
phenotypically distinct subpopulations (Fig. 1C, Inset). In
arrested, autophagous “A cells,” nonoptimal temperature abol-
ishes growth jointly with gene expression, while resistant “R
cells” continue growing and expressing the reporter, maintaining
overall growth and stable bimodal distributions at the cell
population level.
To examine the origins of this cell fate bifurcation, we rea-

soned that temperature stress acts as a selective force on a
phenotypically heterogeneous, intrinsic cellular property such as
Tsl1p (6) or Hsp12p (52) levels. If continued cell growth and
gene expression require this property to exceed some threshold,
then two subpopulations will naturally emerge (Fig. 2A). Spe-
cifically, R cells that exceed the threshold will sustain growth and
reporter expression, while A cells below the threshold will arrest
growth and lose gene expression. Additionally, this simple
threshold model predicts that growth in higher stress requires
exceeding a higher threshold, which fewer cells can achieve.
Consequently, higher stress levels should augment the fraction of
A cells at the expense of R cells. Indeed, gene expression mea-
surements confirmed this expectation: The fraction of A cells

increased as the temperature deviated from the optimum in ei-
ther direction (Fig. 1D), partly explaining the concave temper-
ature dependence profile of gene expression (SI Appendix, Fig.
S3A). Accordingly, the coefficient of variation (CV) (the ratio of
the SD and the mean) for the full NF0 population had a convex
trend, with minimum values at 20 and 30 °C (SI Appendix,
Fig. S3B).
Discounting the nonexpressing A cells, temperature still af-

fected gene expression in the R cell subpopulation (Fig. 1E). To
examine whether the temperature-dependent trends of gene
expression in R cells were purely due to slower growth at non-
optimal temperatures, we developed computational “growth rate
models.” These models assumed constitutive gene expression,
setting all protein dilution rates equal to R cell growth rates
estimated from the experimental temperature-dependent growth
rates of the whole population (Fig. 1B and SI Appendix, section
1.1 and Fig. S1 A and B). These growth rate models could not
reproduce the experimentally observed trends for the NF0 R
cells (SI Appendix, Fig. S4). Therefore, next we also assumed
Arrhenius temperature dependence of protein synthesis rates (SI
Appendix, section 1.2). These augmented “Arrhenius models”
matched the NF0 R cell data well, except at 35 °C (Fig. 1E). This
discrepancy at 35 °C could arise because the PGAL1-D12 is a
PGAL1-based, possibly nonconstitutive promoter, with sugar- and
potentially temperature-dependent native regulation. We con-
cluded that Arrhenius models with temperature-dependent
growth and reaction rates were sufficient to capture gene ex-
pression changes for R cells expressing a single reporter gene at
various temperatures. Multiscale models additionally including
the population-dynamic effect of growth arrest could explain the
full NF0 cell population’s behavior.
Next, we asked whether the temperature-dependent cell fate

bifurcation and bimodal gene expression might be observable for
some other yeast strains and promoters. Therefore, we in-
vestigated how heating affects reporter gene expression from the
same PGAL1-D12 promoter (53) in Σ1278b (also known as TBR1;
MATα, ura3-52, his3::hisG, leu2::hisG), which has 3.2 single-
nucleotide polymorphisms per kilobase compared with the
standard laboratory strain S288c (54, 55). In the TBR1 yeast
strain yEGFP gene expression from the PGAL1-D12 promoter was
bimodal at 38 °C and unimodal at 30 °C (Fig. 2B), suggesting that
the heat-induced cell fate bifurcation is not strain dependent. We
also investigated the expression of multicistronic FLO11-2A-YFP
(composed of the FLO11 and the YFP reporter genes linked via
a 2A self-cleaving peptide) from PFLO11, one of the longest yeast
promoters with intricate native regulation, in SK1 (also known as
KV2695; MATa/α HO gal2 cupS can1R BIO), a diploid yeast
strain coexpressing YFP with the FLO11 transcript (56, 57).
Gene expression was again bimodal at 38 °C and unimodal
at 30 °C (Fig. 2C). Overall, these findings suggest that cell
fate bifurcation into A cells and R cells at nonoptimal tem-
peratures is a generic, not promoter- or yeast strain-dependent
phenomenon.
Considering that the A cell fate also implies protein loss,

causing a low-expressing peak and a bimodal distribution, we
sought an exception to this effect. In particular, the levels of any
R cell fate predictor/marker molecule should be already high
even before heating in future R cells. Conversely, the same
molecule should be expressed at low levels already before
heating in future A cells (Fig. 2A). Therefore, the heat-induced
loss of an R cell fate predictor protein should not generate a
bimodal expression distribution. To test this idea, we investigated
a GFP-tagged heat-tolerance marker gene TSL1 (6) at its native
locus (Tsl1-GFP S288c; MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0)
from the yeast-GFP collection. As expected, we found that this
yeast strain remained unimodal after heating (Fig. 2D). Taken
together, these observations support the hypothesis of a cell fate

B C D

A
yEGFP

Tsl1 Tsl1-
GFP

Fig. 2. Temperature effects on gene expression in various yeast strains. (A)
Schematic of temperature effects on gene expression and division at the single-
cell level, where lighter-gray–shaded R cells are stress resistant, and dark-shaded
A cells are sensitive, future nonexpressing, growth-arrested A cells, which
eventually become irregularly shaped dark dead cells. At normal temperature
(tails of the dashed arrows), cells express proteins and divide. At nonoptimal
temperatures (tips of the dashed arrows), only R cells with high levels of re-
sistance (rightward-curving arrows, pointing to R cells with light shading on the
Left and green color on the Right) are able to express and divide. This gives rise
to the temperature-dependent fraction of growth-arrested A cells (leftward-
curving arrows) at the expense of resistant R cells. (B) TBR1 yeast cells have
unimodal reporter expression from PGAL1-D12 at 30 °C, which becomes bimodal at
38 °C. (C) KV2695 yeast cells have unimodal reporter expression from PFLO11 at
30 °C, which becomes bimodal at 38 °C. (D) Tsl1p-GFP S288c yeast cells have
unimodal reporter expression from PTSL1 at both 30 and 38 °C, as expected for a
stress-resistance marker protein. fluor, fluorescence; norm, normalized.
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decision between growth arrest and resistance based on molec-
ular marker levels before the onset of heat stress.

Temperature-Dependent Growth Rate of NF Cells. Knowing that
cells undergo a critical decision between growth arrest and re-
sistance, we asked how robust was gene network module function
in R cells that continue growing at nonoptimal temperatures. To
understand how heating and cooling affect the function of simple
network modules in YPH500 R cells, we studied a genomically
integrated synthetic biological construct (Fig. 3A), the linearizer
or NF gene circuit (32). NF consists of the tetracycline repressor
(TetR) inhibiting transcription of its own gene and a reporter
gene from identical PGAL1−D12 promoters in an inducer-dependent
manner (44, 58). This gene circuit linearizes the dose–response
before saturation and reduces the heterogeneity of gene expression
compared with similar gene circuits without autoregulation (32).
NF can also be a biosensor for molecular effects; for example,
deviations of its dose–response from linearity indicates additional
feedback (59).
The NF gene circuit is a simple example of a hierarchical

network module with regulatory layers through which environ-
mental effects can percolate, making interpretation more dif-
ficult compared with constitutive single-gene expression. The
NF0 single-gene measurements guided us to first study the ex-
ponential growth rates of budding yeast cells with uninduced NF
gene circuits (“NF cells” hereafter) at constant temperatures
ranging from 5 to 40 °C (Materials and Methods). Uninduced NF
cells grew optimally at 30 °C and their growth rates decreased
similarly to NF0 at other temperatures (SI Appendix, Fig. S2B).
Based on these measurements, we selected 12 °C as the “cold”

and 38 °C as the “warm” temperatures to study further, com-
pared with the “standard” 30 °C condition. These temperatures
slowed but did not halt cell growth, so that we could still dilute
and passage the cell cultures into fresh medium. Earlier evidence
that most yeast proteins remain folded below 40 °C (60) and
above 5 °C (61) further justified these growth temperature
choices.
Armed with an understanding of how temperature affects cell

growth with single genes and the uninduced network module,
next we studied these effects while altering the inducer level to
adjust the strength of regulatory connections. The inducer does
not impede yeast growth directly, since doxycycline is harmless to
eukaryotes, as confirmed by growing in doxycycline “parental”
YPH500 yeast cells devoid of synthetic gene circuit components
(SI Appendix, Fig. S5). Therefore, to study how temperature
interacts with induction to alter NF cell growth, we measured
exponential growth rates of NF cells at various inducer (doxy-
cycline) concentrations at warm, cold, and standard tempera-
tures (SI Appendix, Fig. S1C). We observed that both warm and
cold NF cells grew much slower than at 30 °C throughout all
induction levels (SI Appendix, Fig. S6 A and C). To separate the
effects of temperature and doxycycline-induced gene ex-
pression on growth, we normalized the growth rates in each
temperature by their corresponding uninduced values (doxycy-
cline concentration of 0 μg/mL; SI Appendix, Figs. S6C and S7A).
Such normalization eliminates temperature-related effects, so
any remaining differences relative to standard temperature
should indicate an interaction between induction and temper-
ature. This normalization revealed that heating and cooling in-
creased the slight toxicity of moderate NF induction (SI Appendix,

A B C

D E F

Fig. 3. Temperature effects on the inducer-dose–response of NF gene expression. (A) Schematic of the negative-feedback (NF) synthetic gene circuit,
consisting of the yEGFP::zeoR reporter and the tetR repressor that also regulates its own expression. Repression is relieved by doxycycline (dox). The blunt
arrows indicate repression. (B) Experimental (dotted lines) and multiscale Arrhenius model-predicted (solid lines) dose–responses of the high-expressing NF R
cell subpopulation mean yEGFP::ZeoR expression (m is a parameter described in Results, Altered DNA Binding from MD Explain the Functional Effect of
Heating NF R Cells). Error bars are SEM (n = 3). (C) Dose–response of the coefficient of variation (CV) of R cell yEGFP::ZeoR expression. Error bars are SEM (n = 3).
(D) Fluorescence histograms of yEGFP::ZeoR expression in the NF strain at increasing doxycycline concentrations at 12 °C. (E) Fluorescence histograms of the NF
strain at 30 °C. (F) Fluorescence histograms of the NF strain at 38 °C. fluor, fluorescence; norm, normalized.
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Fig. S7A). On the other hand, warm conditions abolished the slight
toxicity of high NF induction.

Temperature-Dependent Dose–Responses of Noisy Gene Expression
in NF Cells. Next, we asked whether quantitative models of NF
cells could predict how temperature affects the dose–response
curves of gene expression versus inducer concentrations based
on the knowledge we gained so far. To make such predictions, we
developed a growth–arrest Arrhenius-type model (Materials and
Methods, Mathematical Modeling), which worked well in captur-
ing the temperature-dependent behaviors of the high-expressing
NF0 R cells (Fig. 1E). We incorporated the growth rates of NF R
cells (SI Appendix, Fig. S1D) as well as their arrest rates into a
multiscale model, which accounted for population dynamics
(arrest and growth of R cells) as well as temperature-dependent
intracellular reaction kinetics based on a previously established
ordinary differential equation model (32) of the NF gene circuits
(Eq. 2) (SI Appendix, section 2). We first estimated a few un-
known parameters by fitting this model to gene expression data
at 30 °C and then predicted the dose–response for R cells and
thereby for full NF populations at nonoptimal temperatures
(Materials and Methods, Mathematical Modeling).
The computational model predicted that cooling should in-

crease the inducer sensitivity of NF dose–responses in R cells
relative to the standard temperature and that heating should not
affect the gene expression dose–response (Fig. 3B). We also
studied computationally the temperature dependence of the CV

by performing the corresponding stochastic simulations to char-
acterize the widths of the distributions besides their means at
various inducer levels (Fig. 4B). The models predicted that
heating and cooling should leave the NF CV dose–response of
high-expressing R cells relatively unaffected (Fig. 4C).
Flow cytometry experiments indicated that cooling and heat-

ing preserved the NF gene circuit’s mean dose–response linearity
(32) nearly up to saturation at all temperatures in R cells (Fig.
3B) and at the full-population level (SI Appendix, Fig. S8A), as
predicted computationally. However, cooling increased the slope
of linear dose–response and shrank the range of linearity less
than heating, in contrast to computational predictions (Figs. 3B
and 4B and SI Appendix, Fig. S9A). Both heating and cooling
lowered fully induced, saturated NF expression (SI Appendix,
Fig. S10A). Neither heating nor cooling altered substantially the
CV dose–response of NF R cells (Fig. 3C). However, heating
elevated the full NF population’s CV dose–response to unusu-
ally high levels (SI Appendix, Fig. S8B), requiring multiscale
computational models incorporating the A cells (SI Appendix,
Fig. S9B).
This contrasted sharply all previous studies of the yeast NF

gene circuit (32, 59), where gene expression histograms were
always unimodal and narrow, maintaining a low CV at all in-
ducer concentrations (Fig. 3E). Upon closer inspection, we also
found a small low-expressing subpopulation for cold NF cells at
high induction (Fig. 3D). As for NF0 cells, the CV increase at
high temperature stems from gene expression bimodality due to

A B C

D E F

Fig. 4. Revised multiscale models incorporating MD simulation results capture temperature-effects on NF gene circuit function. (A) Probability of TetR DNA-binding
domain (DBD) separation distance as a function of temperature from molecular-dynamics (MD) simulations. Distributions of apoTetR with doxycycline bound (−DNA/
+dox, denoted −/+) and TetR bound to DNA without doxycycline (+DNA/−dox, denoted +/−). (Inset) Cocrystal structure of TetR bound to DNA (PDB ID 1QPI) with the
doxycycline binding pockets shown as pink and gray spheres. The gray ribbons represent TetR (monomers A and B highlighted in red and blue; red and blue spheres
are launch points for disordered loops); the sticks colored by element (carbon is cyan) represent DNA. (B) Stochastic dose–response simulations of the yEGFP::ZeoR gene
expression mean. m is the temperature-dependent DNA-binding parameter based on MD simulations as described in Results, Altered DNA Binding from MD Explain
the Functional Effect of Heating NF R Cells. (C) Dose–response of the coefficient of variation (CV) obtained from stochastic simulations of yEGFP::ZeoR expression. Error
bars are SEM (n = 3). (D) Stochastically simulated NF gene expression dose–response histograms corresponding to 12 °C. (E) Stochastically simulated NF histograms at
30 °C. (F) Stochastically simulated NF histograms at 38 °C. See SI Appendix, Table S2 for parameters. fluor, fluorescence; norm, normalized; sim, simulations.
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the formation of NF A cells at nonzero induction (Fig. 3F). To
better understand the process of A cell formation, we used time-
lapse microscopy and microfluidics (Movie S1), which again
revealed that some heated NF cells randomly arrest growth and
concomitantly lose their reporter expression (Fig. 5) along
single-cell lineages, similar to NF0 cells. To test A cell viability,
we switched the temperature in microfluidic chips to 30 °C but
could not directly observe any preheated A cells to resume
growth. Nonetheless, we observed small cells percolating
through the chip and recovering by initial pseudohyphal growth,
within 2 d of restoring the temperature to 30 °C. Accordingly,
sorting the lowest-expressing A cells and then batch-culturing
them in normal versus heated conditions indicated that some
rare A cells do eventually recover at 30 °C, but not at 38 °C (SI
Appendix, Figs. S11 and S12). Overall, heated or cooled cells
reach a population-dynamic equilibrium where R cell growth
compensates for other R cells converting into nongrowing,
nonexpressing A cells, similar to earlier findings (33).
Additionally, we also tested whether other NF gene circuit

variants, incorporating modified regulators and promoters (32),
would exhibit analogous temperature-dependent behaviors. Ex-
actly as for NF, cells with these gene circuits had bimodal ex-
pression of both the regulator and target reporter genes at 38 °C
and unimodal gene expression at 30 °C (SI Appendix, Fig. S13),
indicating that the cell fate bifurcation did not depend on gene
circuit components.
Overall, the mathematical model predicted dose–response

changes for cold, but not warm NF gene circuits (Figs. 3B and 4
B and C). Importantly, the multiscale modeling approach cap-
tured the low-expressing subpopulation observed for cooled and
heated NF cells (Fig. 4 D and F) and unimodal expression at
optimal temperature (Fig. 4E). The remaining disagreement
between computational predictions and experimental results
suggests some reaction rate-independent (non-Arrhenius) effect
of heating. Therefore, we looked for additional effects of heating
that could explain this last disparity.

Altered DNA Binding from MD Explains the Functional Effect of
Heating NF R Cells. To elucidate the mechanisms underlying the
remaining discrepancy between computational and experimental
dose–responses of heated NF R cells, we hypothesized that
heating may alter protein structure, affecting transcriptional
regulator function. To test this hypothesis, we performed atom-
istic MD simulations in explicit solvent for the TetR repressor,
for which structures are available in the Protein Data Bank (SI
Appendix, section 4 for details).
TetR functions as a repressor by tightly binding DNA in the

major groove, preventing the access of transcriptional machin-

ery. This is possible because the separation of TetR DNA-
binding domains (DBDs) is ∼33 Å, which equals the helical pitch
of DNA. Previous work (62) has demonstrated that TetR-
inducer binding forces the DBDs to move apart, thereby
diminishing their propensity to adopt conformations that fit into
the major groove of DNA. Therefore, we asked whether tem-
perature might affect the propensity of DNA binding-compatible
(or incompatible) TetR DBD conformations.
To address this question, we performed MD simulations on two

relevant molecular systems, a TetR:DNA complex (+DNA/−dox;
TetR bound to DNA and no doxycycline) and apoTetR (−DNA/
+dox; no DNA, but doxycycline is bound to TetR). We simulated
these two systems in cold, standard, and warm conditions, testing
whether the distributions of apoTetR DBD separation distances
(63) change with temperature (SI Appendix, Table S1). The re-
sults (Fig. 4A) indicate that without inducer the TetR:DNA
complex maintains its dynamics at all three temperatures, sam-
pling from a tight distribution (with small SD) centered at a
mean value of 33 Å. This matches the helical pitch of DNA,
suggesting that temperature does not alter the DNA-binding
affinity of uninduced TetR (63). Likewise, cooled apoTetR
adopted a large DBD separation distance, indicating limited
DNA binding propensity compared with standard temperature.
However, surprisingly, the DBD separation distance distribution
of heated apoTetR shifted to lower values. We verified that this
shift is not due to DBD unfolding (SI Appendix, Fig. S14) or
doxycycline unbinding (SI Appendix, Figs. S15 and S16). Unlike
for cool and standard temperatures, the warm apoTetR DBD-
separation distribution contains the normal TetR:DNA distribu-
tions, suggesting that doxycycline-bound apoTetR can abnormally
bind to DNA at 38 °C. In summary, the MD simulations suggested
that heated apoTetR has an increased probability of binding the
operator and repressing gene expression despite the presence
of bound inducer.
Motivated by these MD simulation results, we further modi-

fied the multiscale mathematical model to also reflect the MD
effects, allowing DNA binding of apoTetR in heated R cells. To
account for DNA-binding compatible and incompatible confor-
mations of apoTetR, we incorporated temperature-dependent
terms into the NF growth–arrest model. This revised model with
four temperature effects captured the increased inducer sensi-
tivity for heated NF cells (Figs. 3B and 4B). This finding raises
new questions about the structural effects of temperature un-
derlying changes in protein–DNA binding and their relevance for
gene-regulatory network function.

Multiscale Effects of Heating and Cooling on a PF Gene Network. To
test whether the bimodal gene expression observed at low and
high temperatures in induced NF cells (Fig. 3 D and F) may
generalize to other gene networks, we investigated temperature-
dependent effects for a second genetic construct, the PF gene
circuit (33) (Materials and Methods and Fig. 6A). Previously, we
employed the PF gene circuit to study how the costs and benefits
of gene expression (33) shape population dynamics and thereby
genetic evolution (64). The PF gene circuit consists of an rtTA
transactivator that activates its own gene and a reporter gene
when bound by a tetracycline analog inducer (33).
As with the NF cells, high and low temperatures reduced PF

full-population growth rates in addition to PF induction toxicity
(SI Appendix, Fig. S6 B and D). For PF cells (33), induction-
dependent growth rate decline was more pronounced due to
activator (rtTA) “squelching” (65) by general transcription factor
(TF) sequestration from vital cellular processes (66). Normaliz-
ing the growth rates in each temperature as for NF (SI Appendix,
Figs. S6 B and D and S7B) revealed that low induction still de-
celerated the growth of warm and cold PF cells, but less than at
30 °C (SI Appendix, Fig. S7B). This suggests that both heating
and cooling might lessen low induction toxicity. On the other

Flow

I
II

III IV

I II III IV 12 h

A B

Fig. 5. Gene expression shutdown and growth arrest in induced NF yeast
cells at high temperature. (A) Time courses show the shutdown of GFP re-
porter expression in three representative induced NF cells at 38 °C and
doxycycline concentration of 2 μg/mL. (Inset) Microscopy images of a single
NF cell at five different time points corresponding to the time course data
indicated by arrows in the main figure. (B) Representative image (bright
field and fluorescence overlaid) of induced NF cells trapped in the micro-
fluidic chip for imaging by microscopy at 38 °C and a doxycycline concen-
tration of 2 μg/mL. fluor, fluorescence; norm, normalized.
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hand, at high induction heating seems to worsen induction tox-
icity, possibly as spurious rtTA interaction affinities toward
general TFs increase in an Arrhenius manner.
Heating and cooling appeared to increase the inducer sensi-

tivity of the mean PF dose–response (Fig. 6B), which saturated at
lower expression levels at both nonoptimal temperatures (SI
Appendix, Fig. S10B), as for the NF cells (Fig. 3B and SI Ap-
pendix, Fig. S10A). On the other hand, gene expression bi-
modality emerged at lower induction in cold PF cells, in contrast
to warm PF cells, which required higher induction to become
bimodal. Considering the cell fate bifurcation of NF and other
yeast strains into A cells and R cells, we tested whether these
trends were due to the presence of PF A cells in the low-
expressing subpopulation. Indeed, there was a low-expressing
subpopulation even after exposing heated PF cells to extremely
high level of induction with 50 μg/mL doxycycline (SI Appendix,
Fig. S17), in contrast to the practically unimodal standard PF
gene expression already at doxycycline concentration of 4 μg/mL
(Fig. 6E).
Thus, we calculated the growth rate of R cells from the full PF

cell population growth rate (SI Appendix, section 1.1 and Fig.
S18B) and estimated the fraction of A cells in the low-expressing
PF subpopulation at nonoptimal temperatures (SI Appendix, Fig.
S18A). After subtracting the estimated A cell fraction, the
heated R cell distributions became more similar, but still not
identical to the standard PF distributions, as achieving the same
expression pattern still required higher inducer concentrations
(SI Appendix, Fig. S19). Accordingly, all PF full-population CV
dose–responses had a peak whose position and height increased
with the temperature (Fig. 6C), corresponding to the emergence
of bimodal PF histograms (Fig. 6 D–F). Overall, even apart from

the population-dynamic effects of growth arrest, temperature
changed the inducer range over which bimodal expression oc-
curred in PF R cells, which is possibly due to Arrhenius effects as
well as altered DNA binding dynamics similar to NF R cells.

Discussion
As a first step to mechanistically understand how temperature
affects stochastic gene expression in gene-regulatory network
modules, we studied the temperature-dependent expression of
single genes and synthetic gene circuits (PF and NF). We have
identified four different effects of nonoptimal temperatures at
various scales: (i) cell fate choice between growth arrest and
stress resistance, (ii) diminished growth of the resistant cells, (iii)
Arrhenius reaction rates, and (iv) altered protein conformational
dynamics. We propose these effects as four pillars of un-
derstanding for temperature effects. The second and third of the
four pillars are likely most generally applicable, for two main
reasons. First, they are based on fundamental and ubiquitous
effects: The Arrhenius law applies for all chemical reactions, and
growth rate changes affect protein half-lives ubiquitously. Sec-
ond, they have already been shown to explain temperature-
dependent gene network function in bacteria (30) and cell-free
systems (31). Nonetheless, it will be interesting to test whether
the first pillar (cell fate choice between growth arrest and re-
sistance) might generalize to other stresses and other cell types,
considering that findings in yeast often generalize to other or-
ganisms (67). The fourth pillar is perhaps the most specific, al-
though it might apply to gene networks incorporating other
members of the TetR repressor family (68). Despite sporadic
applications of Arrhenius models to investigate how temperature
affects genetic oscillators in live bacteria (30) and gene regulation in

A B C

D E F

Fig. 6. Temperature effects on the inducer-dose–response of PF gene expression. (A) Schematic of the positive-feedback (PF) synthetic gene circuit, consisting of the
transactivator rtTA that activates itself and the yEGFP::zeoR reporter when bound by the inducer doxycycline (dox). The pointed arrows indicate activation. (B) Dose–
response of the population average yEGFP::ZeoR expression. (C) Dose–response of the overall coefficient of variation (CV) of yEGFP::ZeoR expression. Data points from
a subsequent dose–response experiment, performed to characterize the CV peak at 12 °C are shown in cyan. Error bars in B and C are SEM (n = 3). (D) Fluorescence
histograms of yEGFP::ZeoR expression for the PF strain at increasing doxycycline concentrations at 12 °C. Inset shows the expression histograms from a subsequent
dose–response experiment, which identified equal peaks at doxycycline concentration of 0.06 μg/mL (axes have the same units as the main figure). (E) Fluorescence
histograms of PF gene expression at 30 °C. (F) Fluorescence histograms of PF gene expression at 38 °C. fluor, fluorescence; norm, normalized.
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cell-free systems (69), the generalizability of these models to other
networks and other organisms, especially eukaryotes, remained
unknown. Moreover, the effects of heating and cooling on sto-
chastic gene expression (noise) have barely been investigated even
in prokaryotes (70). Our work on how heating and cooling affects
the function of gene circuits controlling stochastic gene expression
in yeast fills this double knowledge gap. Nonetheless, future studies
will be needed to test the generality of the four pillars across genes,
gene networks, and organisms.
Despite the noise-suppressing feature of NF (32, 39, 71), high

noise and bimodal expression emerged in the NF gene circuit.
Likewise, temperature changes altered the noise of the PF gene
circuit, apparently shifting the bimodal region progressively up-
ward in warmer conditions. Explaining these effects required a
multiscale modeling framework that combines population dy-
namics, intracellular biochemical kinetics, and MD. This reveals
the multiscale nature of biology and the need for matching
models to bridge the experimental and theoretical domains. It
also highlights the utility of synthetic biology for developing
predictive, quantitative understanding of multiscale biological
phenomena. While quantitative understanding of native net-
works even at a single biological scale can be a struggle, synthetic
gene circuits provide new research tools that enable multiscale
understanding and prediction of phenomena such as evolution
(64) and pattern formation (72). In particular, insights from al-
tered synthetic gene circuit function can reveal structural effects
of temperature for low-abundance transcription factor proteins,
such as TetR, which challenge even the latest technologies (73).
Despite its temperature-dependent slope changes, the NF dose–
response remained remarkably linear in R cells, illustrating the
robustness that feedback confers to gene network function (74).
Incorporating temperature-dependent kinetic parameters,

such as protein synthesis and dilution rates (based on growth rate
measurements), enabled us to predict temperature-dependent
gene circuit dynamics. Considering the pervasiveness of such
temperature effects, these modeling steps should be generally
applicable, to predict the temperature-dependent function of
other synthetic and even natural gene network modules in vari-
ous cell types. Considering that the temperature dependence of
growth rates is easy to determine, and that protein synthesis rates
are directly measurable (75), it will be interesting to explore
these possibilities in future, more comprehensive studies.
Determining how TetR-based systems respond to temperature

is crucial, for three main reasons. First, they are widely applied to
control gene expression in eukaryotic organisms (76). They have
been crucially important parts in most synthetic gene circuits
developed to date, from the seminal toggle switch (18) and
repressilator (19) to logic gates, switches, genetic counters, and
other tools. With synthetic biological applications on the hori-
zon, including tens of TetR family members as candidates for
novel synthetic biological tools (77), it will be increasingly im-
portant to understand how they function at nonoptimal tem-
peratures—as we characterized in the NF and PF strains.
Second, TetR is the naming member of a major family of
∼2,353 transcription factor proteins widely present across bac-
teria, which bear structural and functional similarities (68).
Therefore, our findings are potentially relevant for under-
standing the role, environmental resilience, and functional
impact of such proteins within oceanic and soil ecosystems, as
well as plant and animal (including human) microbiota exposed
to fluctuating temperatures. Third, TetR itself is the key regu-
lator within the transposable TetRA module, the main mediator
of tetracycline resistance in bacteria (78), which is temperature
sensitive (70). As in the NF gene circuit, the TetR protein
transcriptionally represses its own gene and the tetA protein
pump, which mediates the most common form of bacterial re-
sistance to tetracycline antibiotics (79, 80). Thus, our findings are
generally relevant for the emerging antibiotic resistance crisis, to

understand how infectious bacteria carrying TetRA or similar
systems resist treatment as temperatures vary (81) due to fever or
environmental dissemination.
As synthetic biology moves toward real-world applications, some

fundamental challenges will need to be resolved for functional re-
liability in a diverse range of applications and environments.
For example, forward engineering temperature compensation
made a synthetic genetic clock robust to temperature changes (30).
Inspiration for such designs may come from nature, since temper-
ature compensation appears to be an intrinsic property of natural
circadian cycles (82) and certain gene-regulatory network motifs
(31). Although temperature-induced changes in synthetic gene
circuit function present some challenges, they may also present
opportunities to exploit this environmental factor for control pur-
poses. For instance, the period of synthetic genetic oscillators can
be tuned by altering temperature (20) in addition to inducer levels
and growth media. Our findings suggest that achieving a given gene
expression level requires less inducer at low temperatures, which
may help to reduce the cost of reagents in scientific and industrial
applications. At a fundamental level, the insights gained from these
models and experiments open avenues for designing and con-
trolling gene network function and move us toward more fully
understanding the dynamics of gene networks in general.

Materials and Methods
Mathematical Modeling. We developed multiscale models for understanding
temperature effects. The models have components at the levels of the cell
population, cell interior, and single proteins.

The cell population-level component estimates the growth rate of re-
sistant cells, gR =g=fR, and the arrest rate, r = fA=fR g, based on the dynamics
of A and R cell types according to the following (SI Appendix):

dR
dt

=gRR− rR,

dA
dt

= rR.

The intracellular component investigates the effect of nonoptimal temper-
atures on gene expression. For NF0 cells, we considered constitutive ex-
pression of the yEGFP::ZeoR fluorescent reporter (z) according to the model:

dz
dt

= kðTÞ−gðTÞz, [1]

where k(T) and g(T) are temperature-dependent protein synthesis and
growth/dilution rates, respectively.

Likewise, to quantitatively understand the temperature dependence of
the NF gene circuits dose–responses, we employed previously developed rate
equation models. The equations for the NF gene circuit (32) are as follows:

dx
dt

= aFðxÞ+ l−bxy −gðTÞx,
dy
dt

=C −bxy −gðTÞy − fy,

dr
dt

=bxy −gðTÞr,
dz
dt

= aFðxÞ+ l−gðTÞz,

[2]

where the variables x, y, r, and z denote the intracellular concentrations of
inducer-free repressor (TetR) protein, inducer (doxycycline), inducer-bound
TetR protein, and fluorescent reporter (yEGFP::ZeoR) protein. F(x) = θn/(θn +
xn), where θ is the repression threshold corresponding to an effective
repressor-DNA dissociation constant and n is the Hill coefficient. C is a con-
trol parameter that describes the rate of doxycycline entry into the cell and
is proportional to extracellular inducer concentration. The repressor and
reporter-resistance proteins are synthesized at the same rate aF(x) (since
both genes are expressed from the same PGAL1- D12 promoter). Dilution due
to temperature-dependent cellular growth of all three variables is g(T); the
inducer degrades at a rate f. We neglected the active degradation of TetR
and yEGFP::ZeoR due to their relatively long timescales compared with the
degradation of the inducer and cell division time in yeast (32). The leaky
protein synthesis rate is l and the inducer–repressor binding rate is b.
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We added temperature-dependent growth arrest to the NF0 and NF in-
tracellular models by incorporating the experimentally determined low-
expressor fraction of cells at each temperature (Fig. 1D) into a multiscale
version of the Arrhenius model (SI Appendix, section 1). This allowed us to
investigate the hypothesis that a fraction of the cell population stochasti-
cally arrests and shuts off gene expression at high and low temperatures.

The multiscale model with growth arrest accounted for all experimentally
observed temperature-dependent results except one: the increased expres-
sion sensitivity at high temperature. We rectified this by incorporating
temperature-dependent DNA tetR–dox binding (Results, Altered DNA
Binding from MD Explain the Functional Effect of Heating NF R Cells, and
Figs. 3B and 4B) that we inferred from submolecular MD simulations.

Based on the results of the MD simulations (Results, Altered DNA Binding
from MD Explain the Functional Effect of Heating NF R Cells), we modified
the multiscale NF gene circuit model (Eq. 2) to incorporate a temperature-
dependent parameter m(T) that describes the fraction of apoTetR with a
conformational state conducive PGAL1-D12 promoter binding. This modified
model is identical to the model presented in Eq. 2 except F(x) becomes F(x +
mr) = θn/[θn + (x + mr)n]. Details for a stochastic implementation of this
modified model are in SI Appendix, section 3.

We obtained the parameters for the 30 °C condition by fitting the NF
models to the experimental data using custom Matlab scripts to minimize
the sum of squared errors, starting from parameters obtained from (32). We
set the dilution rate g for each temperature equal to the mean cellular R cell
growth rate obtained from exponential fits to the experimental growth rate
data shown in SI Appendix, Fig. S1B. Note that the Hill function constants
have been considered temperature independent, as they are ratios of rate
constants and are specific for a certain reaction (83). The Arrhenius scaling of
reaction rates for the 12 and 38 °C temperature conditions is discussed in SI
Appendix, section 1.2.

For details on MD simulations, see SI Appendix, section 4.

Strains and Media. The haploid Saccharomyces cerevisiae strain “YPH500”
(MATα ura3-52 lys2-801_amber ade2-101_ochre trp1-Δ63 his3-Δ200 leu2-Δ1;
congenic with the standard laboratory strain S288c) was used as a model
organism throughout most of this study. “NF0” (YDN-G1GZmbh), “NF”
(YDN-G1GZmbh-G1Tbt), and “PF” (YDN-T2dGZmxh-T2dMFot) cultures were
grown in synthetic drop-out (SD) medium with the appropriate supplements
(NF0, SD −his +ade; NF and PF, SD −his −trp +ade) to maintain selection and
supplemented with sugars (2% glucose or 2% galactose) as described below
(all reagents from Sigma). Doxycycline (Fisher Scientific) was used to induce
the PF and NF gene circuits. Additionally, experiments were performed on
“2-Color NF” (YDN-G1GZmbh-G1TCbt), “2-Color NF-T123” (YDN-T1GZmbh-
T1TCb), “TBR1” (YLC-TBR1-G1Gh), “Kv2695” (Sk1 FLO11-2A-YFP; K. J. Verstrepen
laboratory, KU Leuven, Leuven, Belgium), and “TSL1” (Tsl1-GFP S288c; S. F. Levy
laboratory, Stanford University, Palo Alto, CA) yeast strains; the former three
strains were grown in SD media (2-Color NF, SD −his −trp +ade; 2-Color NF-
T123 and TBR1, SD −his +ade) and the latter two strains grown in YPD and YPGal
media. YPH500 (Stratagene), the genetic ancestor to the NF0, NF, PF, 2-Color NF,
2-Color NF-T123 strains, was also cultured in YPD and YPGal media.

Cell Culture. Well-isolated single yeast colonies were picked from plates and
incubated overnight in synthetic drop-out medium supplemented with 2%
glucose at 30 °C. Twelve hours later, the 1-mL cell suspensions were diluted
to the concentration 1 × 106 cells per mL—concentration estimated using a
Nexcelom Cellometer Vision cell counter (Nexcelom Bioscience)—in fresh
medium supplemented with 2% galactose. Triplicate cultures were grown

for 48 h in galactose medium with the appropriate concentration of doxy-
cycline (Acros Organics) for each condition to allow gene expression levels
to stabilize (32, 33). Cell density was measured (Nexcelom Cellometer
Vision) and resuspended to a concentration 1 × 106 cells per mL every
12 or 24 h depending on the experimental condition to keep them in log
growth phase.

Flow Cytometry and Fluorescence Microscopy. Population-level gene expres-
sion was read on the BD Accuri flow cytometer (Becton Dickinson) after 48 h
of doxycycline induction. We considered gene expression being stable when
GFP distributions for 30 and 38 °C experiments did not change between 24-
and 48-h measurements (NF cells: Fig. 3 E and F and SI Appendix, Fig. S20 E
and F; PF cells: Fig. 6 E and F and SI Appendix, Fig. S20 B and C), and similarly,
the distributions for 12 °C did not change between 48- and 72-h measure-
ments (NF cells: Fig. 3D and SI Appendix, Fig. S21B; PF cells: Fig. 4D and SI
Appendix, Fig. S21A).

For fluorescence microscopy, cells were cultured for 2 d at 38 °C before
imaging (Strains and Media) and then transferred to a modified high-
throughput yeast aging analysis microfluidics chip (49). Images were ac-
quired on a Nikon computer-controlled motorized inverted fluorescence TIE
Eclipse microscope (Nikon) equipped with a Nikon DS-Qi2 camera. Com-
posite images were prepared in NIS Elements (Nikon).

Growth Rate Measurements. Population growth rate between subsequent
resuspensionswas estimatedby linear fits to log-transformed cell counts (inferred
from cell density measurements, described in Cell Culture, and culture volume).

Data Processing and Analysis. Raw flow cytometry data files were read into
Matlab (Mathworks) using the Matlab script fca_readfcs (Matlab Central) for
plotting and analysis. A small gate was applied to the forward-scatter and
side-scatter data to minimize the contribution of extrinsic noise due to cell
cycle phase, cell size, and age (84), and exclude doublets, dead cells, and
cellular debris from the analysis. To eliminate small numbers of mutated cells
that may have lost the integrated construct (due to homologous re-
combination) or rare cells left over from previous samples (not eliminated by
flow cytometer), cells with log fluorescence deviating more than 3 SDs from
the mean were considered outliers and discarded from the analysis (32, 33,
59). Time-lapse microfluidics images were analyzed in Matlab using custom
scripts. All data and Matlab scripts are available at https://openwetware.org/
wiki/CHIP:Data.
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